Search Results/Filters    

Filters

Year

Banks



Expert Group










Full-Text


Author(s): 

LEE W.N. | STEVE W.

Issue Info: 
  • Year: 

    1996
  • Volume: 

    18
  • Issue: 

    -
  • Pages: 

    148-156
Measures: 
  • Citations: 

    1
  • Views: 

    113
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 113

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MURRY D.A. | NAN G.D.

Issue Info: 
  • Year: 

    1996
  • Volume: 

    19
  • Issue: 

    2
  • Pages: 

    275-283
Measures: 
  • Citations: 

    1
  • Views: 

    150
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 150

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MOHAMMADI F.

Issue Info: 
  • Year: 

    2018
  • Volume: 

    3
  • Issue: 

    4
  • Pages: 

    293-299
Measures: 
  • Citations: 

    0
  • Views: 

    215
  • Downloads: 

    227
Abstract: 

Nowadays, the automobile industry is moving towards hybridized and fully electric vehicles. The industry has been slowly moving towards this future from decades. Firstly, hybrid and semi-hybrid cars became famous, and now due to the advancements in battery technology, fully electric cars are becoming increasingly popular. Due to the car manufacturers designations, the electric cars have reached the stage of mass production. Many countries such as the U. S., Germany, and France have pledged to reduce the usage of gasoline and diesel cars, and increase the use of electric vehicles due to the diminishing non-renewable resources. In this paper, Electrification of an electric vehicle has been performed, in which the solar energy has been used along with the traditional plug-in energy to power the vehicle. The solar energy absorbed from the sun by the solar panel is converted into chemical energy, and stored in batteries. Therefore, the solar-powered electric car can work with an electric motor instead of an Internal Combustion Engine (ICE) to drive the car. Also, the motor can run on AC current which is converted by the inverter from DC current stored in batteries. To drive the car in electric mode, a 360 V Li-polymer battery pack with 100 kWh energy capacity has been proposed to install in the car. Thus, the approach of transforming solar energy into chemical energy, and converting chemical energy to mechanical energy have been applied in this solar-powered electric car. Moreover, the functionality of off-road driving, as well as on-road has been considered. In order to increase/decrease the ground clearance of the car, equipping the car with air suspension system has been investigated.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 215

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 227 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    1-9
Measures: 
  • Citations: 

    0
  • Views: 

    21
  • Downloads: 

    3
Abstract: 

Electric energy is necessary to meet the daily needs of the population, as it is used in cooking, heating, irrigation, lighting and others. There are many residential areas far from the public electricity network, hence the importance of solar energy in meeting the needs of these residents. This paper will study the design of a solar photovoltaic system with a capacity of 131.6 kwh. The needs and requirements will be studied first, then a design will be made for The parts of this system, such as inverters, batteries, photovoltaic panels and other parts. The results that we will obtain will confirm that this energy system is able to meet the necessary needs with high efficiency, and will also confirm that it is environmentally friendly in terms of carbon emissions. We will take Tanzania as a case study , the designed system contain 108 panels and about 8kw battery bank to supply the load .

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 21

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2008
  • Volume: 

    6
  • Issue: 

    2
  • Pages: 

    144-149
Measures: 
  • Citations: 

    0
  • Views: 

    732
  • Downloads: 

    0
Abstract: 

Static Electrification due to oil flow is the main reason for several electrical breakdowns in large transformers. In the present paper this phenomenon has been investigated by the aid of open cycle system. Finally from tests results obtained by authors, the effects of applied electric field, temperature and oil flow velocity on static Electrification have been investigated.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 732

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    31
  • Issue: 

    8 (TRANSACTIONS B: Applications)
  • Pages: 

    1347-1355
Measures: 
  • Citations: 

    0
  • Views: 

    196
  • Downloads: 

    80
Abstract: 

Despite efficient carbon monitoring system and the commercialization of battery technology for intraport transportation, port management are found not deploying environmental equipmentsmainly due to high cost. Port authority who regulates environmental policies lacks leverage to impose tangible reduction standards on emission through concession. This model integrates sustainability into port equipment expansion theory by quantifying viable equipment Electrification profile while still observing threeconstraints of operation, cost and environment. A benchmark emission reduction standard (ERS) is surveyed by Delphi method as environmental demand indicator thatsimulates for the Electrification of port equipments. The results from Port of Tanjung Pelepas case study suggest an ERS implemented lower than 4% reduction a year is viable to retrofit and replace all electric rubber-tired gantries and prime movers. The simulation model allows informed decision for all port agents to establish viable environmental policies for sustainable port operations.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 196

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 80 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

HENDRICKS J.A.

Journal: 

MANAGEMENT ACCOUNTING

Issue Info: 
  • Year: 

    1988
  • Volume: 

    70
  • Issue: 

    6
  • Pages: 

    24-30
Measures: 
  • Citations: 

    1
  • Views: 

    129
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 129

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    5
  • Issue: 

    2
  • Pages: 

    159-170
Measures: 
  • Citations: 

    0
  • Views: 

    11
  • Downloads: 

    0
Abstract: 

The global electricity demand is rapidly growing due to population increase and industrialization. However, the reliance on fossil fuels and other non-renewable energy resources has resulted in climate change and other unsustainability-related issues. This study aims to determine the significant penetration levels of Solar PV on system operations and production costs based on the current year (business as usual scenario) and the accelerated Solar PV scenario (hypothetical future) in the Kenyan electricity generation system. A one-year dynamic analysis based on an hourly time step energy demand was performed using the Energy PLAN simulation tool. The current peak demand for electricity in Kenya was established to be 2,056.67 MW with an installed capacity of 3,074.34 MW with a 2.47% contribution by Solar PV while the curtailed energy was 285.51 GWh. The simulation results showed that large-scale installations of Solar PV can decrease CO₂-equivalent emissions from 0.134 Mt to 0.021 Mt. Both scenarios are presented in terms of their ability to avoid excess electricity production regarding system operations and production costs. Increasing the share of Solar PV in electricity generation is possible by as much as 39.56% (technical) and 30.54% (market economic) simulation. Additionally, the Solar PV electricity produced increased to 19.76 TWh/year from 11.90 TWh/year. Furthermore, the Market Economic Simulation showed that the total investment annual cost for Solar PV in the hypothetical future was low at 10 mEUR/Year. Therefore, large-scale installation of Solar PV in Kenya's energy system is feasible and economically viable based on technical analysis and economic analysis.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

BHUIYAN M.A.M. | DEB A. | NASIR A.

Issue Info: 
  • Year: 

    2013
  • Volume: 

    66
  • Issue: 

    13
  • Pages: 

    45-52
Measures: 
  • Citations: 

    1
  • Views: 

    188
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 188

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

SHAYEGHI H. | HASHEMI Y.

Issue Info: 
  • Year: 

    2020
  • Volume: 

    8
  • Issue: 

    1
  • Pages: 

    1-14
Measures: 
  • Citations: 

    0
  • Views: 

    67
  • Downloads: 

    94
Abstract: 

In this paper, an optimal design of the renewable combustion plant has been investigated with the aim of ensuring the required load on the Gorgor station. The purpose of this study is to minimize the cost of the proposed hybrid unit during the period of operation of the designed system simultaneously. Information on the intensity of solar radiation and the intensity of wind blowing in the area are taken and applied in the simulation of the system. The intended target function includes the cost of investment, replacement cost and maintenance cost. After the design phase, the main objective is to check the economic benefits of the project's utilization from the grid and compare it with the renewable electricity system, as well as to calculate the initial investment return in renewable electricity. First, the initial cost of consuming electricity from this project is calculated using a renewable electricity system, and then the cost of project is determined using the national grid. Further, by calculating the annual current cost of each of these combinations, the investment return in each mode is obtained. Various options for the use of renewable energies are surveyed separately and in combination. The technical-economic analysis is done on each of these options and ultimately the best one is presented.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 94 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button